skip to Main Content

Effect of explant type (leaf, stem) and 2,4-D concentration on callus induction: influence of elicitor type (biotic, abiotic), elicitor concentration and elicitation time on biomass growth rate and costunolide biosynthesis in gazania (Gazania rigens) cell suspension cultures

TitleEffect of explant type (leaf, stem) and 2,4-D concentration on callus induction: influence of elicitor type (biotic, abiotic), elicitor concentration and elicitation time on biomass growth rate and costunolide biosynthesis in gazania (Gazania rigens) cell suspension cultures
Publication TypeJournal Papers
Year of Publication2022
AuthorsHuda E. Mahood, Virginia Sarropoulou, Thiresia-Teresa Tzatzani
JournalBioresources and Bioprocessing
Volume9
Pagination100
ISSN
URL
DOI10.1186/s40643-022-00588-2
Citation Key
Keywords
AbstractGazania rigens (L.) Gaertn. (Asteraceae) is a medicinal plant with high ornamental potential and use in landscaping. The therapeutic potential of sesquiterpene lactones (SLs) as plant natural products for pharmaceutical development has gained extensive interest with costunolide (chemical name: 6E,10E,11aR-6,10-dimethyl-3-methylidene-3a,4,5,8,9,11a-hexahydrocyclodeca[b]furan-2-one) used as a popular herbal remedy due to its anti-cancer, antioxidant, anti-inflammatory, anti-microbial, anti-allergic, and anti-diabetic activities, among others. In the present study, two explant types (leaf, stem) and four 2,4-dichlorophenoxy acetic acid (2,4-D) concentrations (0, 0.5, 1 and 2 mg/L) were tested for callusing potential. The results showed that stem explants treated with 1.5 mg/L 2,4-D exhibited higher callus induction percentage (90%) followed by leaf explants (80%) with 1 mg/L 2,4-D, after a 4-week period. Cell suspension cultures were established from friable callus obtained from stem explants following a sigmoid pattern of growth curve with a maximum fresh weight at 20 days of subculture and a minimum one at 5 days of subculture. In the following stage, the effects of elicitation of cell suspension cultures with either yeast extract (YE) or methyl jasmonate (MeJA), each applied in five concentrations (0, 100, 150, 200 and 250 mg/L) on cell growth (fresh and dry biomass) and costunolide accumulation were tested. After 20 days of culture, YE or MeJA suppressed cell growth as compared to the non-elicited cells, while costunolide accumulation was better enhanced under the effect of 150 mg/L MeJA followed by 200 mg/L YE, respectively. In the subsequent experiment conducted, the optimal concentration of the two elicitors (200 mg/L YE, 150 mg/L MeJA) was selected to investigate further elicitation time (0, 5, 10, 15 and 20 days). The results revealed that YE biotic elicitation stimulated cell growth and costunolide production, being maximum on day 20 for fresh biomass, on day 5 for dry biomass and on day 15 for the bioactive compound. Accordingly, cell growth parameters were maximized under the effect of abiotic elicitation with MeJA for 15 days, while highest costunolide content was achieved after 10 days. Overall, MeJA served as a better elicitor type than YE for biomass and costunolide production. Irrespective of elicitor type, elicitor concentration and elicitation time, maximal response was obtained with 150 mg/L MeJA for 10 days regarding costunolide accumulation (18.47 ppm) and 15 days for cell growth (fresh weight: 954 mg and dry weight: 76.3 mg). The application of elicitors can lead the large quantity of costunolide to encounter extensive range demand through marketable production without endangering of G. rigens .
PDF
Back To Top
×Close search
Search